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a b s t r a c t 

Topic models have been widely used to mine hidden topics from documents. However, one limitation of 

such topic models is that they are prone to generate incoherent topics. To address this limitation, many 

approaches have been proposed to incorporate the prior knowledge of word semantic relatedness into 

the topic inference process. One example is the Generalized P ́o lya Urn (GPU) scheme. However, GPU- 

based topic models often require sophisticated algorithms to acquire domain-specific knowledge from 

data. Moreover, prior knowledge is incorporated into the topic inference process without considering its 

impact on the intermediate topic sampling results. In this paper, we propose a novel Weighted P ́o lya Urn 

scheme and incorporate it into Latent Dirichlet Allocation framework to build the self-enhancement topic 

model and generate coherent topics. In specific, semantic prior knowledge based on word embedding 

is employed to measure the semantic coherence of a word to different topics, which is incorporated 

into the Weighted P ́o lya Urn scheme. Moreover, semantic coherence is updated dynamically based on 

the semantic similarity between a word and the representative words in different topics. Experiments 

have been conducted on seven public corpora from different domains to evaluate the effectiveness of 

the proposed approach. Experimental results show that compared to the state-of-the-art baselines, the 

proposed approach can generate more coherent topics. 

© 2019 Elsevier B.V. All rights reserved. 
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. Introduction 

Topic models, such as Latent Dirichlet Allocation (LDA) [1] ,

ave been powerful approaches for unsupervised topic extraction,

articularly within the domain of text processing. Many variants

f LDA have been proposed in the natural language processing

ommunity to tackle different problems. For example, Lin and He

2] proposed a Joint Sentiment-Topic Model for topic-associated

entiment analysis. Yan et al. [3] proposed a biterm topic model

o deal with the data sparsity in short text. Yin and Wang [4] em-

loyed a Dirichlet Multinomial Mixture model for short text

lustering. However, such unsupervised topic models are prone to

enerate incoherent topics without using any prior knowledge of

ord semantic relatedness. 

To address this problem, several approaches have been pro-

osed to incorporate the domain knowledge mined from ex-

ernal corpora or supplied by users into the topic inference

rocess. For example, the Dirichlet Forest-LDA model [5] incorpo-

ated the knowledge expressed as constraints of must-links and
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annot-links. A must-link states that two words should be assigned

o the same topic, while a cannot-link states that two words

hould not appear in the same topic. Chen et al. [6] employed

he domain knowledge mined from an external corpus using the

eneralized P ́o lya Urn (GPU) scheme for the extraction of product

spects. In a similar vein, Chen and Liu [7] proposed a lifelong

earning framework based on GPU for product aspect mining. 

However, GPU-based topic models often require sophisticated

lgorithms to acquire domain-specific knowledge from data.

oreover, prior knowledge of word semantic relatedness is incor-

orated into the topic inference process without considering its

mpact on the intermediate topic sampling results. For example,

s illustrated in Fig. 1 (b), if the word ‘picture’ is sampled from the

machine learning’ urn (topic), other similar words such as ‘image’

nd ‘vision’ might also be added into the ‘machine learning’ urn.

owever, most existing words in the urn are actually not seman-

ically related to the word ‘picture’ . As such, blindly incorporating

rior knowledge of word semantic relatedness without considering

ts impact on the existing topic sampling results may deteriorate

he quality (topic coherence) of the ‘machine learning’ topic. 

To overcome the two weaknesses of GPU, in this paper, we

ropose a novel self-enhancement topic modeling approach

ased on the Weighted P ́o lya Urn scheme. In particular, a novel
ic coherence with Weighted P ́o lya Urn scheme, Neurocomputing, 
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Fig. 1. Comparison of SPU, GPU and WPU. Here, SPU means the Simple P ́o lya Urn 

scheme. In WPU, balls in red dominate the left urn ( ‘computer vision’ topic) and balls 

in blue dominate the right urn ( ‘machine learning’ topic). The balls with different 

numbers represent different words. For example, the ball with digit ‘8’ denotes the 

word ‘picture’ . 
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measure, semantic coherence, is proposed to describe the semantic

similarity between a word and a topic based on their respective

word embedding. For example, as illustrated in Fig. 1 (c), the

semantic coherence between the word ‘picture’ and the topic

‘computer vision’ (left urn) is higher than that with the topic

‘machine learning’ . Such semantic coherence measure is employed

in the proposed Weighted P ́o lya Urn scheme (WPU). Moreover, the

semantic coherence value is updated dynamically based on the

intermediate topic sampling results during the self-enhancement

phase of topic modeling. 

The contributions of this paper are summarized as follows. 

• To the best of our knowledge, it is the first attempt to employ

the semantic coherence measures of words with different topics

during the topic inference process. A novel Weighted P ́o lya Urn

scheme is proposed to incorporate such semantic coherence. 

• A novel self-enhancement topic modeling approach based on

Weighted P ́o lya Urn scheme is proposed, in which intermediate

topic sampling results in each Gibbs sampling iteration are

employed to update the semantic coherence values and guide

the subsequent sampling iteration. 

• Experimental results on seven public corpora show that the

proposed approach outperforms the state-of-the-art baselines

and generates more coherent topics. 

The remainder of the paper is organized as follows:

Section 2 briefly introduces the related work; a novel Weighted

P ́o lya Urn (WPU) scheme is dicussed in Section; In Section 4 ,

a WPU-based sampler is incorporated into topic modeling to

propose the Self-Enhancement Topic Model (SE-TM); Experiments

and result analysis are disscussed in Section 5 . Finally, we will

conclude the paper in Section 6 . 

2. Related work 

Our work is related to three lines of research, word repre-

sentation learning, the Simple P ́o lya Urn (SPU) scheme and the

Generalized P ́o lya Urn (GPU) scheme. 
Please cite this article as: R. Wang, D. Zhou and Y. He, Optimising top
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.1. Word representation learning 

Distributional semantic models (i.e. word embeddings) have

ecently been applied successfully in many NLP tasks [8] . 

Neural network based approaches have become more effi-

ient, allowing their use in multiple scenarios, thanks to the

kip-gram with negative-sampling training method (SGNS) [9] . It

as widely popularized via word2vec , a software to create word

mbedddings. To model the entailment and the asymmetric re-

ationships between embeddings, Vilnis and McCallum [10] used

 multivariate gaussian density to represent a word. Recently, a

ew word embedding method has been proposed, called fastText

11] which treats each word as made of character n-grams. Vector

epresentations are then computed from the sum of their n-gram

epresentations. Furthermore, Athiwaratkun et al. [12] developed

 probabilistic fastText that can capture multiple word senses,

ub-word structure and uncertainty information. More traditional

ector representations based on a dimensionality reduction ob-

ained by applying the Singular Value Decomposition (SVD) to the

eighted document-term matrix of the corpus; Latent Semantic

nalysis (LSA) [13] is a prominent method following this approach.

.2. Simple P ́o lya Urn scheme 

SPU works on colored balls and urns. When a ball in a partic-

lar color is drawn from an urn, the ball is put back to the urn

long with a new ball in the same color as illustrated in Fig. 1 (a).

he generative process of LDA could be interpreted by SPU [14] . In

he topic modeling context, a word could be viewed as a ball in

 certain color and a topic could be viewed as an urn. The word

istribution of a topic is reflected by the color proportions of balls

n the urn. The specific process illustrated in Fig. 1 (a) corresponds

o assigning a word to a specific topic in the Gibbs sampling

rocess in topic modeling. The standard LDA model, following the

PU scheme, could capture the word co-occurrence patterns in a

ext corpora. However, such simple scheme does not consider the

emantic relatedness of words. 

.3. Generalized P ́o lya Urn scheme 

GPU is proposed to overcome the aforementioned limitation of

PU [15] . GPU differs from SPU in that, when a ball in a certain

olor is drawn, two balls in the same color are put back along

ith a certain number of balls in some other similar colors, which

s illustrated in Fig. 1 (b). These added balls in other similar colors

re placed into the urn to increase the proportions of other similar

olors in the urn, which number is decided by a promotion matrix.

n this way, external knowledge can be incorporated into topic

odeling. For example, Chen and Liu [7] proposed using frequent

attern mining to extract words relating to the same product

spect from product reviews and incorporated the acquired knowl-

dge into the GPU-based topic model. Li et al. [16] used the GPU

cheme in the Dirichlet Multinomial Mixture (DMM) model for

hort text clustering. But these GPU based topic models rely on the

onstruction of the word promotion matrix and do not consider

he impact of promoted other similar words on the existing topic

ampling results. 

. Weighted P ́o lya Urn scheme 

In this section, we introduce the proposed Weighted P ́o lya Urn

WPU) scheme, a new type of P ́o lya Urn scheme. 

Suppose there are K urns (e.g., indexed by [1,2,..., K ]), and each

rn initially contains the same number of standard balls in one of

he V different colors. The weight of each standard ball is initially
ic coherence with Weighted P ́o lya Urn scheme, Neurocomputing, 
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. We repeatedly choose a colored ball from these urns until con-

ergence in three following steps: (1) choose an urn k according to

he K -dimensional Multinomial distribution which is proportional

o the number of balls in K urns; (2) choose a ball in the v th color

rom the selected k urn with the probability proportional to the

otal cumulative weight of all balls with the v th color in urn k ; (3)

ut back the selected ball and a new ball in the v th color, with

eight, which is derived based on its similarity to the main color

amily in the urn k . As illustrated in the left of Fig. 1 (c), as the

olor v (red) is similar to the dominated color (red) of urn k , a

ew red ball with a higher weight (e.g., 1.2 or 1.5) is added to urn

 . Otherwise, a new red ball with lower weight (e.g., 0.5 or 0.8) is

dded to urn k as illustrated in the right of Fig. 1 (c). 

When the process stops, a V -dimensional Multinomial distri-

ution proportional to the cumulative weights of different colored

alls in each urn is obtained. Obviously, WPU inherits the merit

f SPU ( ‘the rich get richer’ ) due to the mechanism of adding same

olor balls. Furthermore, it also has the strength of ‘weigh more if

ore similar’ by considering the similarity between the sampled

olor and the dominated color in the urn. 

In the context of topic modeling, urns are topics and V different

olored balls correspond to V distinct words in the vocabulary.

he dominated color of an urn denotes the semantic meaning of a

pecific topic. The above process could be viewed as a special case

f sampling based on WPU. Here, the semantic similarity between

he sampled color and the dominated color in an urn is defined

s the semantic coherence between the word and the topic, which

lays a crucial role in WPU. By using semantic coherence, external

nowledge of word semantic relatedness can be incorporated into

opic modeling, which will be described in more details in the

ollowing section. 

. Self-enhancement topic modeling 

In this section, we describe our proposed self-enhancement

opic modeling (SE-TM) based on WPU. The training procedure

f SE-TM contains two phases, the burn-in phase and the self-

nhancement phase. The burn-in phase aims to generate the topic

andidates without the incorporation of external knowledge. In

he self-enhancement phase, the semantic prior knowledge, stored

n a word similarity matrix, and the topic candidates are used to

alculate the semantic coherence of each word with different top-

cs. The semantic coherence information is employed by collapsed

ibbs sampling for self-enhancement topic modeling. As the topic

andidates evolve in each iteration, the semantic coherence is

pdated dynamically. In the following, we first describe how we

uild the semantic coherence matrix from the word similarity

atrix, followed by the collapsed Gibbs sampling procedure. 

.1. Word similarity matrix 

Recently, word representation learning has gained an increas-

ng interest due to its improved efficiency and effectiveness in

apping one-hot encoding into a low-dimensional space [11] . The

earned word embeddings have been proved to encode numerous

emantic relations (e.g. similarity and morphology) based on the

ontext of words [8] . Many approaches have been proposed to

nhance the topic modeling results using the word embeddings

hat words with similar semantic and syntactic properties are

lose to each other in the embeddings space [17,18] . 

Here, we use the word embeddings to construct the word

imilarity matrix C with the dimension of V × V to capture the

emantic similarity between words, where V is the vocabulary

ize. The i, j th entry of the word similarity matrix contains the

osine similarity between two word embeddings �
 v i and 

�
 v j , i.e.,

[ i, j] = cos ( � v i , � v j ) . 
Please cite this article as: R. Wang, D. Zhou and Y. He, Optimising top
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.2. Semantic coherence matrix 

As discussed before, each word has distinct semantic coherence

o different topics which can be calculated based on the inter-

ediate topic sampling results. The semantic coherence matrix,

 with the dimension of K × V is used to store the semantic

oherence values of words with topics. 

During the self-enhancement phase, the posterior topic-word

istribution is calculated at the end of current Gibbs sampling

teration. Then, we get the intermediate representative words

n each topic RW 

i (ranked by the topic-word probability in the

escending order and the superscript i denotes the i th iteration)

nd their corresponding probabilities P i . Both RW 

i and P i are

 × M matrix and M is the number of representative words for a

opic, which is set to 10 in our experiments. RW 

i and P i capture

he information about the prominent words and their composition

robabilities respectively of the generated topics. 

For each word v , we calculate its correlation value with the rep-

esentative words of a topic k based on the following equation, 

V [ k, v ] = 

M ∑ 

m =1 

P i [ k, m ] · C[ v , RW 

i [ k, m ]] , (1)

here P i [ k, m ] is the probability of m th representative word in

opic k at i th iteration, RW 

i [ k, m ] is the m th representative word

n the topic k at i th iteration, C [ i, j ] denotes the cosine similarity

alue between two words � v i and 

�
 v j . 

CV [ · , v ] captures the semantic coherence of v with different

opics. Next, we map the CV [ · , v ] into an arithmetic progression
ˆ V [ ·, v ] (normalized correlation value) ranging from −0.5 to 0.5.

or example, in the 5-topic case, CV [ · , v ] = [1.2, 0.4, −0.4, −0.05,

.01] will be mapped to ˆ CV [ ·, v ] = [0.5, 0.3, −0.3, −0.1, 0.1]. Ob-

iously, ˆ CV [ ·, v ] keeps the relative ranking of semantic similarity

alues in the original CV [ · , v ]. Finally, the semantic coherence

alue of v to the topic k could be calculated based on the following

quation, 

[ k, v ] = 1 + tc · ˆ CV [ k, v ] , (2)

here the trust coefficient, tc ∈ [0, ∞ ), is the hyper-parameter to

escribe the confidence of using the knowledge provided by word

mbeddings. 

.3. Gibbs sampling 

In this subsection, we introduce the collapsed Gibbs sampling

lgorithm for the proposed Self-Enhancement Topic modeling

pproach. 

As the semantic coherence matrix S will be updated dynam-

cally according to the correlation between a word and topics

n the self-enhancement phase, we use the cumulative semantic

oherence value matrix W ( K × V ) to calculate the sampling

istribution. Besides, we also observe that the semantic coherence

alue of a word with a topic does not always equal to 1. During

he derivation process of posterior conditional distribution, the

eal values in W and S make the derivation more intricate to give

 exact Gibbs sampling distribution than SPU based model because

hat the property of gamma function (e.g. �(x ) = (x − 1)! ) could

ot be employed to simplify the derivation. Due to the fact that

ach element in S values around 1, we make an assumption that

he semantic coherence value of the current word w d, n (valued

 

′ ) with each topic equals to 1. We follow Mimno et al. [15] and

imic the true Gibbs sampling distribution with a approximated

ne. Based on this assumption and the property of gamma func-

ion, an analytical posterior conditional distribution is obtained
ic coherence with Weighted P ́o lya Urn scheme, Neurocomputing, 
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which is shown in Eq. (3) . 

p(z j = k ′ | � z − j , � w ) ∝ 

n 

k ′ 
d, − j 

+ αk ′ 
∑ K 

k =1 n 

k 
d, − j 

+ αk 

· W [ k, v ′ ] − j + βv ′ 
∑ V 

v =1 W [ k, v ] − j + βv 
(3)

where k ′ is the sampled topic, the subscript j is the current index

( d, n ), − j means the count or semantic coherence value of the

current word is excluded, n k 
d 

refers to the number of times that

topic k has been observed with a word of document d . The W [ k, v ]

corresponds to the cumulative weight of balls with color v in the

k th urn. The detailed sampling scheme is shown as Algorithm 1 . 

Algorithm 1 Training procedure for SE-TM. 

Input: D, K, C, α, β , tc, burn _ in , max _ iter 

Output: the posterior topic word distributions �

1: /* Initialize semantic coherence matrices* /

2: Initialize S cur , S last with all entries set to 1. 

3: for i ≤ max _ iter do 

4: if i ≤ burn _ in then 

5: / * burn-in phase, (similar to LDA) * /

6: for d ∈ D do 

7: for w d,n ∈ w 

d do 

8: k = z d,n , v ′ = w d,n 

9: n k 
d 

= n k 
d 

− 1 

10: W [ k, v ′ ] = W [ k, v ′ ] − S last [ k, v ′ ] 
11: sample a new topic k ′ via Eq. (3) 

12: n k 
′ 

d 
= n k 

′ 
d 

+ 1 

13: W [ k ′ , v ′ ] = W [ k ′ , v ′ ] + S cur [ k 
′ , v ′ ] 

14: end for 

15: end for 

16: else 

17: / * self enhancement phase * /

18: for d ∈ D do 

19: for w d,n ∈ w 

d do 

20: k = z d,n , v ′ = w d,n 

21: n k 
d 

= n k 
d 

− 1 

22: W [ k, v ′ ] = W [ k, v ′ ] − S last [ k, v ′ ] 
23: sample a new topic k ′ via Eq. 3 

24: n k 
′ 

d 
= n k 

′ 
d 

+ 1 

25: W [ k ′ , v ′ ] = W [ k ′ , v ′ ] + S cur [ k 
′ , v ′ ] 

26: end for 

27: end for 

28: �i ← getT opicW ordDistribution () 

29: RW 

i ← getRepresentW ords (�i ) 

30: P i ← getP robO f RW (RW 

i , �i ) 

31: S last ← S cur 

32: S cur ← updateSMatrix (C, RW 

i , P i ) 

33: end if 

34: end for 

5. Experiments 

In this section, we first introduce the corpora we used for our

experiments, and then describe the baseline approaches, finally

present the experimental results. 

5.1. Experimental setup 

Seven publicly accessible corpora are used for evaluation: NIPS

dataset, Grolier dataset, Clinical dataset and four product review

datasets. Details are summarized below: 
Please cite this article as: R. Wang, D. Zhou and Y. He, Optimising top
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• NIPS dataset 1 has been widely used in topic modeling experi-

ments. It is the collection of NIPS articles and most articles are

related to neural networks and machine learning. 

• Grolier dataset 1 is built from Grolier Multimedia Encyclopedia,

and its content covers almost all the fields, such as sports,

economy, politics and etc. 

• Clincial dataset [19] has been released for i2b2 Natural Lan-

guage Processing Challenges. The dataset contains 1249

discharge summaries and has many domain specific words

such as medical nomenclature and drug names. 

• Product review datasets [20] 2 contain Amazon product reviews

in different categories. We select four datasets, mp3, laptop,

video and mobile for our experiments. 

We choose the following six topic models as the baselines: 

• LDA [1] , is a topic model that generates topics based on word

co-occurrence patterns from documents. We implement the

LDA model and set the Dirichlet prior of the document-topic

distribution α = 50 /K and the Dirichlet prior of the topic-word

distributions β = 0 . 01 , following what have been suggested in

[21] . 

• GPU-LDA [15] , is a topic model based on the Generalized P ́o lya

Urn scheme. We implement the algorithm using Mallet 3 . 

• GPU-LDA + embedding , is a variant version of GPU-LDA [15] .

Due to the usage of word embedding in the proposed SE-TM,

we employ this variant based on GPU-LDA to make a fair

comparison. Unlike the GPU-LDA, the element of the promo-

tion matrix A is obtained based on the cosine similarity of

word embeddings of two words. More concretely, A i,j is set to

0.1 if the cosine similarity of i and j is higher than 0.7.) We

implement the algorithm using Mallet. 

• LDA-VAE [22] , is a neural topic model based on variational au-

toencoder. We use the implementation in the original paper 4 . 

• ProdLDA [22] , is a variant of LDA-VAE, in which the distribu-

tion over individual words is a product of experts rather than

the mixture model used in LDA. The original implementation

is used. 

• Gaussian-LDA [23] , uses a multivariate gaussian distribution

to model the topic-word distribution and takes the word em-

beddings as input. The original implementation 

5 with default

configuration is employed. 

We obtain the processed NIPS and Grolier dataset online 1 . For

linical dataset, the NLTK stopword list is employed to remove the

ommon words. For the four product review datasets, we follow

6,24] to consider each sentence as a document and perform the

ollowing pre-processing steps: (1) convert letters to lowercase;

2) check the spelling using pyenchant 6 and remove mis-spelled

ords; (3) remove the words with fewer than 3 character; (4)

emove the top ten frequent words. The statistics of processed

orpora are shown in Table 1 . 

To incorporate the semantic knowledge into SE-TM and calcu-

ate the semantic coherence value between words and topics, three

opular word embeddings are employed. Most of our experiments

se the 50-dimensional pre-trained Glove word embeddings [25] .

o explore whether the performance of the proposed approach

s sensitive to the word embeddings used, we use the gensim li-

rary 7 to build a 200-dimensional word2vec embeddings [9] with
ic coherence with Weighted P ́o lya Urn scheme, Neurocomputing, 
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Fig. 2. Average topic coherence vs. different topic proportion on Clinical dataset. 

Fig. 3. Average topic coherence vs. different topic proportion on NIPS dataset. 

Fig. 4. Average topic coherence vs. different topic proportion on Grolier dataset.. 

Table 1 

The statistics of 7 corpora, each sentence is viewed as a document in Laptops, MP3, 

Video and Mobile corpora. 

Domain #Document #Words 

NIPS 1500 12,375 

Grolier 29,762 15,276 

Clinical 1249 7832 

Laptops 394,548 6907 

MP3 324,436 5725 

Video 429,351 6744 

Mobile 1,236,465 10,243 
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a  
efault configuration. Also, we use the fastText library 8 to build a

00-dimensional fastText embeddings [11] . The two embeddings

re trained on the latest Wikipedia corpus 9 . 

The trust coefficient tc of the proposed approach is set to

0.6, 1.0, 1.5] in our experiments. Also, the burn-in and the Gibbs

ampling iterations are set to 200 and 1000, respectively. Typically

opic models are evaluated based on the likelihood of held-out

ocuments. However, as pointed out in [26] , higher likelihood

f held-out documents doesn’t necessarily correspond to human

udgement of topic coherence. Therefore, in this paper, we follow

27] and select four common coherence metrics including UCI (a

oherence measure based on a sliding window and the pointwise

utual information of all word pairs of the given topics), NPMI

an enhanced version of the UCI coherence using the normalized

ointwise mutual information), C_P (a coherence measure based

n a sliding window, a one-preceding segmentation of the given

ords and the confirmation measure of Fitelson’s coherence) and

_A (a coherence measure based on a context window, a pairwise

omparison of the given words and an indirect confirmation

easure that uses normalized pointwise mutual information and
8 https://github.com/facebookresearch/fastText . 
9 https://dumps.wikimedia.org/enwiki/latest/enwiki- latest- pages- articles.xml.bz2 . 

A  

t  

Please cite this article as: R. Wang, D. Zhou and Y. He, Optimising top
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he cosine similarity) to evaluate the topics generated by models.

 higher value implies more coherent topics. In our evaluation, we

ake the top 10 words sorted by their topic-word probabilities to

epresent each topic and compute the topic coherence using the

almetto library 10 . 

.2. Topic coherence vs. different topic proportion 

To compare the performance of the proposed approach with

he baselines, we firstly make a comparison of topic coherence vs.

ifferent topic proportions. Experiments are conducted on all the

even corpora with six topic number settings [10, 20, 30, 50, 75,

00]. To compare the comprehensive performance, we calculate

he average topic coherence among topics whose coherence values

re ranked at the top 50% (or 70%, 80%, 90%, 100%) positions.

or example, to calculate the average NPMI coherence of LDA @

0%, we only select topics whose NPMI are ranked at the top 50%

ositions for each dataset, and then average the NPMI values of

hose topics obtained using LDA under different topic number

etting for each datasets. Experimental results on the average topic

oherence vs. different topic proportions are shown in Figs. 2–8 .

n Figs. 2–8 , the values are obtained by SE-TM with tc is set to 1.0,

nd the Glove embeddings are employed in this subsection. 

It can be observed from Figs. 2–8 that our proposed SE-TM

odel outperforms LDA, GPU-LDA, GPU-LDA + embedding, LDA-

AE, ProdLDA and Gaussian-LDA on first three topic coherence

easures (NPMI, UCI and C_P). It should be pointed out that the

mprovement of SE-TM is slight on NIPS dataset, and this may

ecause that it has too many words have domain specific meaning

hich are not similar to their common sense stored in word

mbedding. For C_A measure, the Gaussian-LDA performs the best,

nd our SE-TM performs the second best across all the datasets.

ccording to the observation in [27] that NPMI and C_P are better

han UCI, C_A in terms of their correlations to human judgment,
10 https://github.com/dice-group/Palmetto . 

ic coherence with Weighted P ́o lya Urn scheme, Neurocomputing, 
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Fig. 5. Average topic coherence vs. different topic proportion on Laptops dataset. 

Fig. 6. Average topic coherence vs. different topic proportion on MP3 dataset. 

Fig. 7. Average topic coherence vs. different topic proportion on Video dataset. 

Fig. 8. Average topic coherence vs. different topic proportion on Mobile dataset. 

Fig. 9. Average topic coherence (100%) of Clinical dataset vs. different topic number. 

Fig. 10. Average topic coherence (100%) of NIPS dataset vs. different topic number. 

 

 

 

 

 

5

 

d  

c  
we could conclude that SE-TM generally obtains more coherent

topics. Meanwhile, it also shows that explicitly taking into account

semantic coherence of a word with different topics during the

Gibbs sampling process could indeed help to achieve better topic

coherence compared to topic models following the SPU and GPU
scheme. v  

Please cite this article as: R. Wang, D. Zhou and Y. He, Optimising top
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.3. Topic coherence vs. different topic number 

Furthermore, to explore how topic coherence results vary with

ifferent topic numbers, we show in Figs. 9–15 the average topic

oherence of each corpus (with all topics taken into account)

s. different topic number settings. As shown in Figs. 2–8 that
ic coherence with Weighted P ́o lya Urn scheme, Neurocomputing, 
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Fig. 11. Average topic coherence (100%) of Grolier dataset vs. different topic number. 

Fig. 12. Average topic coherence (100%) of Laptops dataset vs. different topic number. 

Fig. 13. Average topic coherence (100%) of MP3 dataset vs. different topic number. 

Fig. 14. Average topic coherence (100%) of Video dataset vs. different topic number. 

Fig. 15. Average topic coherence (100%) of Mobile dataset vs. different topic number. 
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DA-VAE and ProdLDA often performs the worst compared with

ther approaches, to simplify the figure and make a more clearly

omparison, we remove the curves obtained by these two models

nd only show the partial strong baselines in Figs. 9–15 . In this

ubsection, SE-TM[1.0] with Glove embeddings is also employed in

he experiments. 

It can be observed that SE-TM outperforms the baselines in

ost cases in terms of NPMI, UCI, C_P measures. For C_A measure,

aussian-LDA obtains the best average coherence values except

or Grolier and Video datasets. Also, SE-TM performs at least the

econd best on this measure. Generally, we could find that the

esults shown in Figs. 9–15 are consistent with the observations

n Section 5.1 . Besides, with the increasing number of topics, the

opic coherence of SE-TM drops slightly. 

More concretely, we could have another two observations from

igs. 9–15 : (1) SE-TM do not performs very well for NIPS dataset,
Please cite this article as: R. Wang, D. Zhou and Y. He, Optimising top

https://doi.org/10.1016/j.neucom.2019.12.013 
2) GPU-LDA + embedding and GPU-LDA do not improve the quality

f the extracted topic for most datasets. This maybe caused by the

ollowing factors: (i). NIPS dataset has too many words has domain

pecific meaning which are not similar to their common sense.

or example, the nearest neighbor words of ‘neural’ in this domain

aybe ‘network’, ‘input’ and ‘loss’, while in common sense, some

edical terms (such as ‘neurology’, ‘cell’ and ‘synapse’) are its

ost similar words. Thus, the gap between domain knowledge

nd common knowledge contained in word embeddings lead to

he insufficient improvement. (ii). During the inference procedure

f GPU based approaches, the corresponding sampler blindly

ncorporate the pre-obtained semantic relatedness into the model

ithout considering any information intermediate topic repre-

entations. And this mechanism may inject the wrong knowledge

nto the model and further deteriorate the quality of the extracted

opics. 
ic coherence with Weighted P ́o lya Urn scheme, Neurocomputing, 

https://doi.org/10.1016/j.neucom.2019.12.013


8 R. Wang, D. Zhou and Y. He / Neurocomputing xxx (xxxx) xxx 

ARTICLE IN PRESS 

JID: NEUCOM [m5G; January 2, 2020;19:19 ] 

Fig. 16. SE-TM using different word embeddings in comparison with baseline approaches. 

Table 2 

Word embedding comparison on the clinical dataset, the coherence values are cal- 

culated based on 100% topics. 

Model NPMI UCI C_P C_A 

SE-TM + Glove −0.024 −1.538 −0.132 0.142 

SE-TM + fastText −0.019 −1.438 −0.048 0.150 

SE-TM + w2v −0.032 −1.650 −0.093 0.148 

LDA −0.040 −1.852 −0.097 0.143 

GPU-LDA −0.042 −1.902 −0.100 0.146 

GPU-LDA + embedding −0.043 −1.853 −0.106 0.139 

LDA-VAE −0.063 −2.454 −0.631 0.117 

ProdLDA −0.052 −1.937 −0.181 0.137 

Gaussian-LDA −0.064 −2.290 −0.380 0.152 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3 

The comparison of baselines and SE-TM using different tc configuration on the 

Grolier dataset. 

Model NPMI UCI C_P C_A 

SE-TM[1.5] 0.0530 −0.0524 0.2077 0.2064 

SE-TM[1.0] 0.0540 −0.0053 0.2137 0.2068 

SE-TM[0.6] 0.0544 0.0335 0.2133 0.2033 

LDA 0.0455 −0.0753 0.1826 0.1954 

GPU-LDA 0.0449 −0.0570 0.1794 0.1934 

GPU-LDA + embedding 0.0394 −0.1861 0.1649 0.1889 

LDA-VAE −0.0507 −2.1231 −0.1947 0.1584 

ProdLDA −0.0164 −1.5172 −0.0177 0.1768 

Gaussian-LDA −0.0123 −1.0141 −0.0263 0.1843 
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5.4. Word embeddings and parameter analysis 

To further study the impact of the different word embeddings

and hyper-parameters, we provide a more detailed comparison

regard to word embedding, the number of representative words M

and trust coefficient tc in this subsection. 

5.4.1. Word embedding comparison 

To explore whether the proposed approach is sensitive to the

specific type of word embedding, experiments of word embedding

comparison have been carried out. 

In this subsection, we conduct experiments using three differ-

ent word embeddings, Glove, word2vec and fastText . We show in

Table 2 the topic coherence results on the clinical dataset. Fig. 16

represents the average topic coherence over top 50%, 70%, 80%,

90% and 100% topics. It can be observed that SE-TM+ fastText the

best. It might attribute to the fact that the clinical dataset contains

many medical terms (e.g., drug names or disease names) and

fastText based on the composition of character n -grams for word

embedding learning captures well the semantics of those medical

terms. 

5.4.2. The impact of the hyper-parameter trust coefficient tc 

To explore the impacts of the hyper-parameter tc and validate

that our proposed SE-TM could perform well with different tc
Please cite this article as: R. Wang, D. Zhou and Y. He, Optimising top

https://doi.org/10.1016/j.neucom.2019.12.013 
ettings, we provide a comparison experiment with different trust

oefficient on Grolier dataset. 

In this subsection, tc is set to 1.5, 1.0 and 0.6, respectively,

able. 3 lists the statistics of the average topic coherence values

hich are computed based 100% topic and best values are high-

ighted in bold. From the comparison between three SE-TMs in

able. 3 , we could observe that the SE-TM[1.0] performs slightly

etter with two best values (C_P and C_A) and two second best

alues (NPMI and UCI). It can be explained that a lower tc results

n the ignorance of word relatedness semantics derived from

ord embeddings and a higher tc may incorporate the semantic

nowledge which is not suitable for a specific domain and hence

ives slightly worse coherence results. Besides,we also make a

omparison between SE-TMs and baselines in Fig. 17 . Due to the

imilar values could be obtained by SE-TM with different tc , we

nly plot the best curve in Fig. 17 to avoid overlapping and give a

lear comparison. 

.4.3. The impact of the hyper-parameter M 

To explore the impacts of the hyper-parameter M and validates

he robustness of the proposed approach, experiments have been

arried out on Clinical dataset. 

In this subsection, M is set to 6, 7, 8, 9, 10 respectively, and the

verage topic coherences over top 50%, 70%, 80%, 90%, 100% are

epresented in Fig. 18 . Besides, Table. 4 lists the statistics of the av-

rage coherence values which are computed based on 100% topics,
ic coherence with Weighted P ́o lya Urn scheme, Neurocomputing, 

https://doi.org/10.1016/j.neucom.2019.12.013


R. Wang, D. Zhou and Y. He / Neurocomputing xxx (xxxx) xxx 9 

ARTICLE IN PRESS 

JID: NEUCOM [m5G; January 2, 2020;19:19 ] 

Fig. 17. Comparison between best coherence obtained by SE-TM using various tc and baseline approaches. 

Fig. 18. Comparison between best coherence obtained by SE-TM using various M and baseline approaches.. 
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nd best values are highlighted in bold. To avoid the overlapping

aused by similar values obtained by SE-TM, we only plot the best

urves obtained by SE-TM in Fig. 18 , and it can be observed that

E-TM outperform the compared baselines on all measures except

C_A’. Though Gaussian-LDA obtains a high ‘C_A’ score, it performs

he second worst on ‘NPMI’, ‘UCI’ and ‘C_P’ measures. Moreover, it

an be also observed that the hyper-parameter M do not impact

he topic quality of SE-TM. Namely, the proposed SE-TM is not

ensitive to the configuration of the hyper-parameter M . 
Please cite this article as: R. Wang, D. Zhou and Y. He, Optimising top
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.5. Example topics 

To directly compare the topic representations extracted by

ifferent approaches, we make a qualitative comparison in this

ubsection. Table 5 shows the top 10 words of example topics

xtracted using our proposed SE-TM in comparison with GPU-LDA

n the Laptops corpus with the topic number set to 75. And the

opics may denote ‘ macbook ’, ‘ size & weight ’, ‘ keyboard ’, ‘ mouse ’

nd ‘ battery life ’. It can be observed that SE-TM gives more coher-
ic coherence with Weighted P ́o lya Urn scheme, Neurocomputing, 
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Table 4 

The comparison of baselines and SE-TM using different M configurations on the 

clinical dataset. 

Model NPMI UCI C_P C_A 

SE-TM( M = 10) −0.032 −1.650 −0.093 0.148 

SE-TM( M = 9) −0.030 −1.646 −0.090 0.151 

SE-TM( M = 8) −0.030 −1.616 −0.097 0.150 

SE-TM( M = 7) −0.031 −1.658 −0.096 0.147 

SE-TM( M = 6) −0.028 −1.604 −0.105 0.145 

LDA −0.040 −1.852 −0.097 0.143 

GPU-LDA −0.042 −1.902 −0.100 0.146 

GPU-LDA + embedding −0.043 −1.853 −0.106 0.139 

LDA-VAE −0.063 −2.454 −0.631 0.117 

ProdLDA −0.052 −1.937 −0.181 0.137 

Gaussian-LDA −0.064 −2.290 −0.380 0.152 

Table 5 

Example topics of SE-TM vs. GPU-LDA on Laptops corpus, italics means out-of-topic. 

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5 

SE-TM 

mac size keyboard mouse battery 

apple small key pad life 

version full type button hour 

book light function click charge 

linux perfect typing finger long 

compatible large backlit touchpad last 

mini heavy style touch longer 

ultrabooks carry layout cursor cell 

osx fit volume scroll depending 

ipod smaller delete scrolling charged 

GPU-LDA 

mac tablet keyboard mouse battery 

book size type touchpad life 

decided full typing click hour 

wanted perfect nice button long 

apple small hand finger last 

try ipad comfortable trackpad charge 

mbp keyboard rest left cell 

expensive netbook feel move longer 

display smaller trackpad pad advertised 

fact larger edge gesture depending 
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ent topic results compared to GPU-LDA. For example, Topic 2 is

about ‘ size & weight ’. But some words returned by GPU-LDA are

less semantically relevant to ‘ size & weight ’, such as ‘ tablet ’, ‘ ipad ’,

‘ keyboard ’ and ‘ notebook ’ highlighted in italics in Table 5 . 

6. Conclusion 

In this paper, we have proposed a Weighted P ́o lya Urn model.

It has two merits that could be described as ‘the rich get richer’

and ‘weigh more if more similar’ . We also model the semantic

coherence of a word with different topics by incorporating the

Weighted P ́o lya Urn scheme into the topic inference process

and propose the self-enhancement topic modeling approach. The

SE-TM employs the intermediate topic sampling results and the

general semantic knowledge provided by word embeddings to

guide the topic sampling in subsequent Gibbs sampling iterations.

Experimental comparison with the state-of-the-art approaches

shows an improved coherence score of generated topics and stable

performance across different domains. 
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